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itly imposed at the interface between media with different per-

mittivities. It is found from Fig. 1 that the agreement is very good

between the results obtained by the present formulation (solid

lines) and those obtained by the formulation using the transverse

magnetic field component (hollow circles) [2]. The spurious solu-

tions do not appear in the entire region of a propagation dia-

gram.

As a more complicated waveguiding configuration, we next

consider the rectangular waveguide with a diamond-shaped insert

studied by Csendes and Silvester [17], as illustrated in Fig. 2. In

this waveguide, there are abrupt changes in the permittivity at the

interface, the normal direction of which does not coincide with

the direction of a coordinate axis. Fig. 2 shows the dispersion

characteristics for the fundamental mode, where two planes of

symmetry are assumed to be perfect magnetic conductors and

one quarter of the cross section is divided into second-order

triangular elements. In Fig. 2, the results of the H, field formula-

tion [2] with NE= 50 and NP = 121 and those of the modal

approximation technique [17] are also presented. For q =1.5, the

results of the present Et field formulation with NE = 50 and

NP =121 agree well with those of the 1%, counterpart. On the

other hand, for a larger value of relative perrnittivity, c1 =10, the

results of the Et field formulation with NE = 50 deviate from

those of the H, counterpart at higher frequencies. This deviation

at higher frequencies reflects the singularity of the normaf electric

field component at the tips of wedges of the dielectric insert

[18]-[20]. Such a singularity near the tip of a dielectric corner

may cause electrical breakdown in ~gh-power applications. It is

evident from Fig. 2 that the Et field finite element solutions can

be improved by increasing the number of elements. Indeed, the

results of the Et field formulation with NE = 128 and NP = 289

are closer to those of the Ht field counterpart. No spurious

solutions are involved in this case as well.

IV. CONCLUSIONS

We have formulated a vectorird finite element scheme for

solving guided-wave problems using the transverse electric field

component. Considering the duality between electric and mag-

netic field vectors in Maxwell’s equations, we have used the same

procedure as the transverse magnetic field counterpart except

that additional conditions we enforced on the boundary between

different dielectric materials. In this approach, the electric field

components cai be directly obtained as an eigenvector of a

matrix eigenvalue problem. Furthermore, no spurious solutions

are involved in the entire region of a propagation diagram, and

the dimension of the find matrix equation is reduced to two

thirds that of the penrdty function method. We have confirmed

the validity of the present formulation via applications to some

canonical waveguide problems.

The approach desc~bed in this paper is also applicable to

waveguides containing @sotropic media such as ferntes because

the tensor permeability may vary from material to material.

Furthermore, extension to waveguides containing lossy and/or

active media is straightforward if one uses the procedure that has

recently been proposed by the authors [21] for the magnetic field

case.
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I. INTRODUCTION

The evaluation of the characteristic impedances of coupled

slab lines has been a subject of investigation for many years

[1]-[6]. As confirmed in [6], the numericaf results recently pub-

lished in [5] are useful in practice from the standpoint of accu-

racy. These results, however, cannot bedirectly used in computer

subroutines for design. It is worth noting that the interpolating

expressions derived in [5] are of little help, because they show

relatively poor agreement with the accurate numerical results

obtained by means of rigorous methods. Therefore in this paper

new, more accurate analytical formulas for computer-aided de-

sign of coupled slab lines are presented. They make it possible to

calculate the geometrical dimensions of the lines for given char-

acteristic impedances 2., and ZOO. The design of lines under

consideration is equivalent to solving two nonlinear equations

with the diameter of the rods and the width of the slot as

unknown variables. For this purpose conventional numerical

methods can be applied.

Simple expressions for calculating the first approximation of

the solution being sought ar~ given.

The advantage of the proposed design algorithm lies also in its

simple mathematical form, enabling it to be easily implemented

even on small personal computers.

H. DESIGN ALGORITHM

A transverse section of the parallel coupled slab lines is shown

in Fig. 1. If the values of the characteristic impedances 2., and

ZOO are given, then the design of these lines consists in calculat-

ing x = d/h and y = s/h from the following set of equations:

Vl(x, y) =Zoe(x, y)–zoe=o

~2(x, Y) =Z’o(x,y)– .20. =0 (1)

where

Zoe(x, y) = 59.9521n[0.523962/( ~l(x)~,(x, y)~(x, y))]

ZoO(x, y) = 59.9521n[0.523962L(x, Y)/(_fl(x)~4(x, Y))]
A(x)=4x)/~(~)

~2(x,y) = c(y) –xd(y)+e(x)g(y) for y<O.9

1 +0.004 exp(0.9– y) for y>O.9

A(x, y) =t~[dx+Y)/4

~,(x y , = k(y) -xl(y) +m(x)n(y) for y <0.9
,

1 for y a 0,9

a(x) =l+exp(16x –18.272)

b(x) =J-

c(y) = –0.8107y3 + 1.3401y2 –0.6929y + 1.0892

+ 0,014002/y – 0.000636/y2

d(y) = 0.11 –0.83y+l.64y2 – y3

e(x) = –0.15exp( –13x)

g(y) = 2.23exp( –7.Oly + 10.24y2 –27.58y3)

k(y) =1+ 0.01( –0.0726 – 0.2145/y+ 0.222573/y2

- 0.012823/y3)

1(y) = 0.01( –0.26+0.6866/y -i-0.0831/yz

–0.0i176/y3)

m(x) = –0.1098 + 1.2138x – 2.2535x2 + 1.1313x3

n(y) = –0.019– O.016/y +0.0362/y2 –0.00243/y3

(2)
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Fig. 1. Transverse section of the parallel coupled slab lines.

The algorithm for solving the set of equations (1) should be

accurate, reliable, quickly convergent, and simple. For solving

these equations a few different numerical methods have been

tried. From the performed analysis it follows that the best results,

in the sense of the above requirements, can be achieved by using

the conventional Newton’s method. According to [7], the (n + I)th

approximation of the solution being :sought is evaluated as fol-

lows:

(4)

l–ax ‘ ay ]

Here (x(”), y(n)) is the nth approximation, n = 0,1,2, . . . .

It should be noted that functions Vl(x, y), V2(x, y) and their

first partiaf derivatives (see formulas (3) and (4)) are calculated at

the point (x(”), y(”) ). The initial approximation of the solution

can be evaluated by

x@)=4/.e.p[- /( r20 59.952 0.987 -O.171k - 1.723k2 )]

(5)y(0) =l/7rln[( r+l)/(r-1)]-xtO)

where

20= ~a

k= (Zoe – ZoO)/(.zO. + zoo)

‘= M+]
(O 001+1 117/, –O 683L2 )

It is worth pointing out that the above initial approximation,

entered into a computer program, significantly reduces the com-

putation time and makes this program more reliable and effec-

tive.

111. COMPUTATIONAL. RESULTS

As a basis for evaluation of the presented design formulas the

accurate numerical results published in [5] have been taken.

These results are reported in terms of the variables x = d/h and

y = s/h in Tables I and II.
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TABLE III

COMPUTATIONAL RESULTS

TABLE I

NUMERSCALVALUESOFTHEEVEN-MODE CHARACTEMSTIC

IMPEDANCEZO,, lN Q

x

0.1
Yx

0.5483

0.5460

0.5418

0.5286

0.4893

0.2 0.3 0.4

8’3.77

84.68

90.96

‘m.04

74.13

1~ .92

70.71

70.05

6’3.70

69.51

0.5

69.1>

66.10

63.66

60.22

58.27

57.01

56,44

56. <4

55.92

0.6 0.7

39.83

37.76

36.39

35.51

35.09

34.83

34.69

0.8
Y

0.1

0.2

0.3

0.4

0,5

0.6

0.1

0.8

0.9

1,0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

i ,8

1.9

2.0

220.68

200.63

107.06

177.56

110.76

165.83

162.25

157.72

155.31

154.03

453.34

152.96

152.78

155.34

443.73

135.08

128.69

124,04

120.57

116,14

113.73

112.44

111.76

111.41

111.20

116. >9

109.10

103.46

99.16

95.91

91.67

89.34

L38.1O

81.42

e7 .05

86.85

53.12

51.21

48.4?

46.66

45.65

45.09

44.78

44.61

27.61

26.74

26.12

25.78

25.59

25.48

0.031623 50 0.5483 0.7882

0.056234 50 0.5464 0.6144

0.100000 50 0.5418 0.4439

0.177828 50 0.5291 0.2829

0.31622’7 50 0.4893 0.1460

0.7882

0.6119

0.4439

0.2802

0.1460

Remark: The characteristic impedances ZO@ and ZOO are related to the

impedance 20 and the coupling coefficient k as follows:

rl+k

r

l–k
Zoe = z“ —

l–k
zoo = Z. —

l+k

ZO, and ZOO given in Tables I and II have been compared with

the corresponding values computed with (2).

It has been found tl at formulas (2) ensure a very good agree-TABLE II

NUMERICAL VALUES OF THE ODD-MODE CHARACTERISTIC ment of calculations I iith the accurate numerical-results for a

wide range of geome .ncaf dimensions. For 0.1< x <0.8 and

0.1< y the maximum percent deviation between the numerical

results (see Table 1) and the interpolated values is not greater

than 0.27 percent for the impedance ZOe. For comparison, the

corresponding deviation obtained with the interpolating expres-

sions derived in [5] is 1.44 percent. Similarly, for 0.1< x <0.8

and 0.1< y the maxi] mm relative deviation evaluated for the

impedance ZOO(see Table II) is equal to 0.65 percent. In this case

the corresponding deviation involved when using the interpolat-

ing expressions given in [5] is greater than 3.65 percent. The

average arithmetical dt viations computed with the proposed for-

mulas for impedance ~;o, and ZOO are equal to 0.13 percent and

0.15 percent. The comparative values of the average deviations

calculated using the interpolating expressions [5] are equal to 0.42

percent and 0.70 percent, respectively.

IMPEDANCE Zoo, IN Q

x

0.1 0,2 0.3 0.4 0.5

31.18

39.95

45.02

50.45

53.02

54.30

54.98

35.32

55.50

0.6

26.44

3’5.17

39.24

41.84

43.09

43.72

44.05

44.22

0.7 0.8

20.83

23.40

24.41

24.86

25.10

25.22

Y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.’9

0.9

1.0

1.1

1.2

1,3

1.4

i .5

1.6

1.7

1.8

1.9
2.0

77.50

101.89

116.86

126.96

134.05

139.12

142.77

147.35

149.77

15i .08

t51 .76

152.12

152.32

55.23

73.26

84.46

92.03

91.31

101.09

705.16

108.21

109.51

170.19

110.56

<10.74

44.12

58.20

66.81

72.57

76.55

81.37

85.86

85.11

85.85

86.22

86.41

36.79

47.94

54.59

58.95

64.04

66.53

67.83

68.52

68.88

69.08

22.06

29.56

32.17

33.34

33.90

34,20

34.35

IV. CONCLUSIONS

The design formulas presented in this paper make it possible to

access the geometrical dimensions of parallel coupled slab lines

The formulas (1) and (2) together with the expressions (5) have provided their characteristic impedances Zoe and ZOO are known.

It has been found frorrl the numerical analysis that the presented

formulas ensure very good agreement of calculations with the

corresponding accuratt values given in [5]. For 0.1< x <0.8 and

0.1< y the maximum percent deviations between the accurate

(see Tables I and II) and interpolated values of impedances ZOg
~~d zOO are equal to C .27 percent and 0.65 percent, respectively.

The design of lines is transformed into the problem of solving

two nonlinear algebraic equations with the diameter of the rods

and the width of the slot as unknown variables. Simple expres-

sions for calculating the first approximation of the solution being

sought are given.

The advantage of the proposed design algorithm lies also in its

simple mathematical form, which can be easily implemented even

on small personal computers.

The solution procedure is also presented, which allows the

practical realization of accurate, reliable, quickly convergent, and

relatively simple computer programs. As an example of such a

program the CSL (in BASIC) is given in the Appendix.

been used in the “computer program CSL. In this program the

auxiliary function U( x, y), defined as

U(x, y) =~’(x, y)+ fi’(x, y) (6)

is also used. The search for the solution (x, y) terminates if

U( X, y) < Zoe Zoo/1000000, which ensure relative accuracy of

the approximation not worse than 0.1 percent for given

impedances 2., and ZOO.

In the program (see the Appendix) apart from computation

statements, there are instructions for protection from different

kinds of errors. For instance, crdculations will not be made if

ZOe < ZOO and then the appropriate report is printed. Similarly,

the Jacobian given by (4) should assume nonzero v&es during

all iterations. Errors due to dividing by zero, although they are of

slight probability, are eliminated by means of instructions written

in lines 500, 510, and 520 of the program.

Some illustrative results, computed by means of CSL, are given

in Table III. In the numerical experiment all values of impedances
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APPENDIX 520 GO TO 0310
530 LET x=ARS (x- (ua*d4-vo*d2) /det )
540 LET M=ABS (M+ (ur)*d3-vo*dl) /deb)

10 REti CSL
550 IF Y( .09 THEN PRINT <Remark: s/h(.1”: STOP

?0 PRINT “COUPLED SLAB LINES”
560 IF x{ .09 THEN PRINT “Remark: d/h(.1”: STOP
570 IF x).81 THEN PRINT “Remark: d/h).8”: STOP

30 PRINT

40 F’131NT “bs S. Roslon iec! Warsaw 1988-
50 PRINT
60 PRINT “Data: “
70 PRINT
SO PRINT ‘Zoe=-; : INPUT zoe; : PRINT zoe, -ohti”
90 PRINT “zoo=”;* INPUT ZOO;: PRINT 200! “ohm”

100 PRINT “ er=l”
110 PRINT “ ur=l-

120 PRINT
130 IF 20. ?(200 THEN PRINT “Error: Zoe(Zoo” : GO Tfl 0050

140 IF ZOI?=ZOO THEN PRINT “The 1 ines are not cowled.’: STOP

150 PRINT “Please ua i L !”
160 PRINT
170 LET z=SOR (ZO@*ZOO)

180 LET k=(zoe-zao)/ (zrm+zoo)
190 LET xo=.4/PI*EXP (-z/ (59.952*SQR ( .987 -.l7l*k-l .723*kek) ) )

200 LET r=(4/(PI*xo) )T(.001+1.117*k- .683*k*k)
210 LET go=ABS (1/PI*LN ((r+l)/(r-1))-xo)
~~o LET ~=xo

230 LET S=HO
240 GO SUB 0300

250 PRINT ‘Resul t,?,: “
~60 ~RIf/T

580 GO TO 0310

590 REM Subrout i m 0590
600 LET fl=l+EXP (16*x-18.272)
610 LET b=SQR (5.905-x*x*x*x)
620 LET h=EXP (PI* (X+ Y)/~)

630 LET fl=x*@Jb
640 LCT f3=(h*h-1)/(h*h+l)
650 IF s)=.9 THEN LET f2=l+.004*EXP ( .9-H) : LET f4=l : GO TO 0760

660 LET C=-.8107*W3+1 .3401 *uT2-.6929*g+l. 0B92+. 014002/s-. OOO636lwt2
670 LET d=. li-.83*H+l .64*st2-st3
680 LET @=-. 15*EXP (-13*x)

690 LET s=2.23*EXP (-7. 01*s+10.24*sf2-27 .58*st3)
700 LET k=i+.01* (- .0726- .2145/s+.222573 /gt2-.Ol282gT3)3)
710 LET 1=.01* (-.26+ .6866/s+ .0831 /’M’2-,0076/sT3)
720 LET m=-. 1098+1 .2138* x-2.2535*x?2+1 .1313* x$3
730 LET n=-. 019-. 01u+u03626xT2T002432 sT3sT3
740 LET f2=c-x*d+e*s
750 LET f4=k-x*l+m*n

760 LET z@=S9.952*LN AK ( .523962/ (f l*f2*f3) )
770 LET ZO=59.95WLN ABS ( .523962*f3/(f 1*P4) )
780 LET U=Z@-ZO@

790 LET V= ZO-ZOO

800 RETURN

270 PRINT ‘d/h=-; x

280 PRINT “s/h=”:~
290 STOP

300 REtl Procedure CSL
310 GO SUB 0590
320 LET UO=U

330 LET VO=V

340 IF (UO*UO+VO*VO) ( z*z/1000000 THEN RETURN
350 LET dh=.0001
360 LET x=x+dh
370 GO SUB 0590
380 LET U1=U

390 LET Vi=V

400 LET x=x-dh
410 LET s=s+dh
420 GO SUB 0590

430 LET U2=U
440 LET V2=V

430 LET di=(ul-uo)/dh
460 LET d2= (UhJO) /dh
470 LET d3=(vl-vo) /dh

4S0 LET d4=(v2-vo) /dh
490 LET det, =dl*d4-d2*d3
500 It_ f@3 (dct, ) )le-9 THEN GO 10 0530

510 LET x=i. Oi*X
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