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itly imposed at the interface between media with different per-
mittivities. It is found from Fig. 1 that the agreement is very good
between the results obtained by the present formulation (solid
lines) and those obtained by the formulation using the transverse
magnetic field component (hollow circles) [2]. The spurious solu-
tions do not appear in the entire region of a propagation dia-
gram.

As a more complicated waveguiding configuration, we next
consider the rectangular waveguide with a diamond-shaped insert
studied by Csendes and Silvester [17], as illustrated in Fig. 2. In
this waveguide, there are abrupt changes in the permittivity at the
interface, the normal direction of which does not coincide with
the direction of a coordinate axis. Fig. 2 shows the dispersion
characteristics for the fundamental mode, where two planes of
symmetry are assumed to be perfect magnetic conductors and
one quarter of the cross section is divided into second-order
triangular elements. In Fig. 2, the results of the H, field formula-
tion [2] with Nz =350 and N,=121 and those of the modal
approximation technique [17] are also presented. For ¢, =1.5, the
results of the present E, field formulation with AN, =50 and
N, =121 agree well with those of the H, counterpart. On the
other hand, for a larger value of relative permittivity, ¢, =10, the
results of the E, field formulation with Ny =350 deviate from
those of the H, counterpart at higher frequencies. This deviation
at higher frequencies reflects the singularity of the normal electric
field component at the tips of wedges of the dielectric insert
[18]-[20]. Such a singularity near the tip of a dielectric corner
may cause electrical breakdown in high-power applications. It is
evident from Fig. 2 that the E, field finite element solutions can
be improved by increasing the number of elements. Indeed, the
results of the E, field formulation with Ny =128 and N, =289
are closer to those of the H, field counterpart. No spurious
solutions are involved in this case as well.

IV. CONCLUSIONS

We have formulated a vectorial finite element scheme for
solving guided-wave problems using the transverse electric field
component. Considering the duality between electric and mag-
netic field vectors in Maxwell’s equations, we have used the same
procedure as the transverse magnetic field counterpart except
that additional conditions are enforced on the boundary between
different dielectric materials. In this approach, the electric field
components can be directly obtained as an eigenvector of a
matrix eigenvalue problem. Furthermore, no spurious solutions
are involved in the entire region of a propagation diagram, and
the dimension of the final matrix equation is reduced to two
thirds that of the penalty function method. We have confirmed
the validity of the present formulation via applications to some
canonical waveguide problems.

The approach described in this paper is also applicable to
waveguides containing anisotropic media such as ferrites because
the tensor permeability may vary from material to material.
Furthermore, extension to waveguides containing lossy and/or
active media is straightforward if one uses the procedure that has
recently been proposed by the authors [21] for the magnetic field
case.
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I. INTRODUCTION

The evaluation of the characteristic impedances of coupled
slab lines has been a subject of investigation for many years
[1]-{6]. As confirmed in [6], the numerical results recently pub-
lished in [5] are useful in practice from the standpoint of accu-
racy. These results, however, cannot be directly used in computer
subroutines for design. It is worth noting that the interpolating
expressions derived in [5] are of little help, because they show
relatively poor agreement with the accurate numerical results
obtained by means of rigorous methods. Therefore in this paper
new, more accurate analytical formulas for computer-aided de-
sign of coupled slab lines are presented. They make it possible to
calculate the geometrical dimensions of the lines for given char-
acteristic impedances Z,, and Z,,. The design of lines under
consideration is equivalent to solving two nonlinear equations
with the diameter of the rods and the width of the slot as
unknown variables. For this purpose conventional numerical
methods can be applied.

Simple expressions for calculating the first approximation of
the solution being sought are given,

The advantage of the proposed design algorithm lies also in its
simple mathematical form, enabling it to be easily implemented
even on small personal computers.

II. DESIGN ALGORITHM

A transverse section of the parallel coupled slab lines is shown
in Fig. 1. If the values of the characteristic impedances Z,, and
Z,, are given, then the design of these lines consists in calculat-
ing x=d/h and y=s/h from the following set of equations:

I/1()6’.))) =ZOe(x’y)—_ZOe=0
Vz(x,J’) =ZOo(x’y)—ZOO=0

(1)

where
Zoo(x, y) =59.9521n[0.523962/( fi( ) (%, ¥) £i(x, »))]

Zoo(x, y) = 59.9521n[0.523962/,(x, ) /( /i) fu( %, )]
hi(x) = xa(x) /b(x)

£ ) = c(y)—xd(y)+e(x)g(y)  fory<0.9
25 V) T 4 0.004exp (0.9— ) for y>0.9
fi(x, y) =tanh[7(x+y)/2]
Nk(y)=xI(y)+m(x)n(y) for y<0.9
f“("’y)"ll for y> 0.9

a(x) =1+exp(16x —18.272)

b(x) =V5.905—x*

c(y) = —0.8107y° +1.3401y* —0.6929y -+1.0892
+0.014002/y ~0.000636,/ y*

d(y) =0.11-0.83y +1.64y> — y*

e(x) =—015exp(—13x)

g(y) =2.23exp(—7.01y +10.24y* —27.58)°)

k(y) =1+0.01( —0.0726-0.2145/y +0.222573 />
—0.012823/y%)

I(y) =0.01( —0.26 +0.6866/y +0.0831 /y*
~0.0076,/y%)

m(x) = —0.1098+1.2138x —2.2535x +1.1313x>

n(y) =—0.019-0.016/y +0.0362/y* —0.00243 /°.

©)
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Fig. 1. Transverse section of the parallel coupled slab lines.

The algorithm for solving the set of equations (1) should be
accurate, reliable, quickly convergent, and simple. For solving
these equations a few different numerical methods have been
tried. From the performed analysis it follows that the best results,
in the sense of the above requirements, can be achieved by using
the conventional Newton’s method. According to [7], the (n + 1)th
approximation of the solution being sought is evaluated as fol-
lows:

1 v, oV
XD = |y 2y ]
J ay dy

iy = oy L 92, N
y =y +J(V1 e 8x) (3)
where
v, o,
ax’ 9
= o, 312 #0. (4)
ax 9y

Here (x'"), ') is the nth approximation, n=0,1,2,--- .

It should be noted that functions ¥{(x, y), V3(x, v) and their
first partial derivatives (see formulas (3) and (4)) are calculated at
the point (x, y'"). The initial approximation of the solution
can be evaluated by

xO =4/mexp [ - zo/ (59.952v/0.987—0.171k —1.723k> )]

yO=1/aln[(r+1)/(r-1)]-x?

where
Zy= v Zy 2y,

k = (Z()e - ZOD)/( ZOe + ZOu)
e [4/( 7m(o))](o 001+1 1174 — 0 6834%)

It is worth pointing out that the above initial approximation,
entered into a computer program, significantly reduces the com-
putation time and makes this program more reliable and effec-
tive.

()

I

As a basis for evaluation of the presented design formulas the
accurate numerical results published in [5] have been taken.
These results are reported in terms of the variables x =d /h and
y=s/h in Tables I and Il

COMPUTATIONAL RESULTS
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TABLE 1 TABLE III
NUMERICAL VALUES OF THE EVEN-MODE CHARACTERISTIC COMPUTATIONAL RESULTS
IMPEDANCE Z;,, IN &
x (0) (0)
v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 k Zgs ohm * y x y
0.1 | 220.68 155,34 116.39 82.37 69.13 53.12 39.83 -
0.2 | 200.63 | 143.73 | 109.10 84.68 66.10 51.21 - 27.61 0.031623 50 0.5483 0,7882 0.5483 0,7882
0.3 | 187,06 | 135,08 | 103.46 80,96 63.66 - 37.76 - 0.056234 50 0.5464 0.6144 0.5460 0.,6119
0.4 177.56 128.69 99.16 78.04 - 48,41 - 26,71
o5 | 10016 | 12001 | om0t - 6022 . 3639 - 0.100000 50 0.5418 | 0.4439 | 0.5418 | 0.4439
0.6 | 165.83 | 120,53 - 7413 - 46,66 - 26.12 0,177828 50 0.5291 0.2829 0.5286 0.2802
0.7 162.25 - 91.67 - 58.21 - 35.57 - 0.316227 50 0.4893 0.1460 0.4893 0.1460
0.8 - 116,11 - 71.92 - 45.65 - 25.78
0.9 157.72 - 89.34 - 57.01 - 35.09 -
1.0 - 13,73 - 70.71 - 45.09 - 25.59 o
1.1 | 155,31 - 88,10 - 56,44 - 34.83 - Remark: The characteristic impedances Z;, and Z;, are related to the
1.2 - 2.4 - 70.03 g 44.78 - 23:49 impedance Z; and the coupling coefficient k as follows:
1.3 | 154.03 - 87.42 - 56,11 - 34.63 -
1.4 - 111.76 - 63.70 - 44,61 - - —
1.5 § 153.34 - 87.05 - 55.92 - - - Z =7 i+k Z =7 -k
1.6 - 111,41 - 69.51 - - - - Oc o 1-% 0o o T4 -
1.7 152,96 - 86.85 - - - - -
1.8 - 114,20 - - - - - -
1.9 152.78 - - - - - - -
2,0 - - - - - - - -
Z,, and Z,, given in Tables I and II have been compared with
the corresponding values computed with (2).
TABLE II 1t has been found that formulas (2) ensure a very good agree-
NUMERICAL VALUES OF THE ODD-MODE CHARACTERISTIC ment of calculations with the accurate numerical results for a
IMPEDANCE Z;,, IN £ wide range of geome.rical dimensions. For 0.1 <x<0.8 and
0.1< y the maximum percent deviation between the numerical
* results (see Table I) and the interpolated values is not greater
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 . .
i than 0.27 percent for the impedance Z,,. For comparison, the
o | 7150 | s5.25 | arz | secto | mos | 2644 | 22.06 . corresponding deviation obtained with the interpolating expres-
0.2 | 101,89 | 73.26 | 58.20 | 47.84 | 30.95 | 33.17 - 20.83 sions derived in [5] is 1.44 percent. Similarly, for 0.1 < x < 0.8
0.3 116,86 84,46 66,81 54.59 45.02 - 29,56 - d O 1 h . 1 . d . . a] d f h
0.t | 126,96 | 92.03 | 72.57 | s8.95 - 39.24 - 23.40 and 0.1 <y the maximnum relative deviation evaluated for the
°~z 134-?2 197'31 7€.55 iy 50.45 e 32.17 2 impedance Z,, (see Table II) is equal to 0.65 percent. In this case
C. 139, 01,09 - 4.01 - 41. - . . O, - . .
0.7 | 142,77 N 81.37 Z 53.02 N 53,34 - the corresponding deviation involved when using the interpolat-
0.8 - 105.76 - 66.53 - 43.09 U B ing expressions given in [5] is greater than 3.65 percent. The
0.9 147.35 - 85.86 - 54.30 - 33.90 - . . . . .
1.0 - | 10821 - 67.83 - 13,72 - a0 average arithmetical deviations computed with the proposed for-
1T L T e | e B mulas for impedance %, and Z,, are equal to 0.13 percent and
13 | 151,08 - 85.85 : 55,52 - 34.35 - 0.15 percent. The comparative values of the average deviations
v lisims | s | T e | . calculated using the interpolating expressions [5] are equal to 0.42
1.6 - 110.56 - 69.08 - - - - percent and 0.70 percent, respectively.
1.7 152.12 - 86.41 - - - - -
1,8 - 110,74 - - - - - -
1.9 152.32 - - - - - - -
20| - - - - - - - - , IV. CONCLUSIONS
The design formulas presented in this paper make it possible to

The formulas (1) and (2) together with the expressions (5) have
been used in the computer program CSL. In this program the
auxiliary function U(x, y), defined as

U(x,y)=V12(x,y)+V22(x,y) (6)

is also used. The search for the solution (x, y) terminates if
U(x, y) < Z,2Zy,,/1000000, which ensures relative accuracy of
the approximation not worse than 0.1 percent for given
impedances Z,, and Z,,.

In the program (see the Appendix) apart from computation
statements, there are instructions for protection from different
kinds of errors. For instance, calculations will not be made if
Zy. < Z,, and then the appropriate report is printed. Similarly,
the Jacobian given by (4) should assume nonzero values during
all iterations. Errors due to dividing by zero, although they are of
slight probability, are eliminated by means of instructions written
in lines 500, 510, and 520 of the program.

Some illustrative results, computed by means of CSL, are given
in Table III. In the numerical experiment all values of impedances

access the geometrical dimensions of parallel coupled slab lines
provided their characteristic impedances Z;, and Z;, are known.
It has been found fron the numerical analysis that the presented
formulas ensure very good agreement of calculations with the
corresponding accurate values given in [5]. For 0.1 < x < 0.8 and
0.1< y the maximum percent deviations between the accurate
(see Tables I and II) and interpolated values of impedances Z,,
and Z,, arc equal to (.27 percent and 0.65 percent, respectively.
The design of lines is transformed into the problem of solving
two nonlinear algebraic equations with the diameter of the rods
and the width of the slot as unknown variables. Simple expres-
sions for calculating the first approximation of the solution being
sought are given.

The advantage of the proposed design algorithm lies also in its
simple mathematical form, which can be easily implemented even
on small personal computers.

The solution procedure is also presented, which allows the
practical realization of accurate, reliable, quickly convergent, and
relatively simple computer programs. As an example of such a
program the CSL (in BASIC) is given in the Appendix.
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APPENDIX
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120
130
140
150
140
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
220
330
340
350
360
370
380
390
400
410
420
430
440
450
440
470
480
490
500
510

REM CSL

FRINT “COUPLED SLAE LINES”

PRINT

PRINT “by S.Rosloniecy Warsaw 1988~
PRINT

PRINT “Datat”

PRINT

FRINT “Zoe="3: INPUT zpe?: PRINT zoer"ohm”
FRINT “Zoo="7% INFUT zoo7: PRINT zoos“ohe”
FRINT “ er=1"

PRINT * ur=1"

FRINT

IF zoe(zoo THEN PRINT “Erport Zoe{Zoo"t! GO TD 0050
IF zoe=zoo THEN PRINT “The lines are not coupled.”: STOP
FRINT *Flease wait !”

PRINT

LET z=88R (zoe¥zoo)

LET k=(zoe-zao)/(zoe+zo0)

LET xo=4/FI*EXP (-2z/(59.952%5GR (.787-.171%k-1.723%k*i0)))
LET r=(4/(FI1%x0))1T(.001+1, 117%i~.683uk%k)
LET uwo=ABS (1/PI*#LN ((r+1)/{(r~1)}-x0)

LET x=xo

LET s=4o

GO SUB 0300

FRINT "Resulbtsg:”

FRINT

PRINT “"d/h="%x

PRINT “s/h="3yu

STOP

REM Procedure CSL

60 SUB 0590

LET uo=y

LET vo=v

IF (uo¥uo+voxvo) (z%z/1000000 THEN RETURN
LET dh=.0001

LET x=x+dh

G0 SUR 0590

LET ul=u

LET visy

LET x=x-dh

LET u=u+dh

GG SUB 0590

LET u2=y

LET v2=v

LET di=(ul~ue)/dh

LET d2=(uZ-uo)/dh

LET d3=(vi-vo)/dh

LET d4={v2-vo)/dh

LET det=dixd4-d2%d3

IF ABS (det)>1le-9 THEN GO TO 0530

LET x=1.01%x

520
530
540
330
940
570
580
590
600
610
620
630
640
650
660
670
480
690
700
710
720
730
740
750
760
770
780
790
800

GO TO 0310

LET %=AKS (n-(uo¥d4-voxd2)/det)

LET 4=ABS (u+(uoxd3-voxdl)/det)

IF 4{.09 THEN PRINT “Resmarks s/h{.1"! STOP

IF %{.0% THEN PRINT “Remark: d/h{.17: STOP

IF x).81 THEN FRINT “Rewark: d/h).87: STOF

G0 TO 0310

REM Subroutine 0590

LET a=1+EXF (16¥x-18.272)

LET b=8QR (5.905-x¥x#x#¥x)

LET h=EXF {(PI%{xt+4}/2)

LET fl=x¥a/b

LET £3=(h%h~1}/<h%h+1)

IF w)#.9 THEN LET £2=1+.004%EXP (.9-w): LET f4=1: GO TO 0760
LET ©=-,8107%yt341 3401 8u12-,6929%9+1,0892+.014002/9~.000636/412
LET d=.11-.83%9+1.64%a412-913

LET e=-,15%EXF (-13%)

LET 9=2.23%EXP (-7.01%u+10,24%412-27.58%413)

LET k=14.01#(~.0726~.2145/u+,222573/412~.012823/413)
LET 1=.01%(~,26+.6866/9+.0831/ut2-.0076/413)

LET m=-,1098+1.2138%x~2.2535%x12+1.1313%x13

LET n=~.,019~.016/4+.0362/412~.00243/913

LET f2=c-xxd+exs

LEY f4=k-x*1+n¥n

LET 2e=59.952%LN ABS (.523962/(F1¥F2%F 1))

LET z0=59.9525LN ABS (.523962%f3/(f1%74))

LET usze-zoe

LET v=zo-zoo

RETURN

{1
2
{31

4

[5]

(6l

i
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